abstract class BaseInstance[A] extends LatticeElement[L[A]]
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- BaseInstance
- LatticeElement
- Show
- Monoid
- Semigroup
- Order
- Equal
- AnyRef
- Any
Implicitly
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new BaseInstance(typeName: String)(implicit arg0: Order[A])
Type Members
-
trait
EqualLaw extends AnyRef
- Definition Classes
- Equal
-
trait
MonoidLaw extends scalaz.Monoid.SemigroupLaw
- Definition Classes
- Monoid
-
trait
OrderLaw extends scalaz.Order.EqualLaw
- Definition Classes
- Order
-
trait
SemigroupLaw extends AnyRef
- Definition Classes
- Semigroup
-
trait
LatticeElementLaw extends MonoidLaw with OrderLaw
- Definition Classes
- LatticeElement
Value Members
-
final
def
append(x: L[A], y: ⇒ L[A]): L[A]
- Definition Classes
- LatticeElement → Semigroup
-
final
def
applicative: Applicative[[α]L[A]]
- Definition Classes
- Monoid
-
final
def
apply: Apply[[α]L[A]]
- Definition Classes
- Semigroup
-
def
apply(x: L[A], y: L[A]): Ordering
- Definition Classes
- Order
-
val
bottom: L[A]
The bottom element
The bottom element
- Definition Classes
- BaseInstance → LatticeElement
-
def
cardinality(x: L[A]): Cardinality
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
category: Category[[α, β]L[A]]
- Definition Classes
- Monoid
-
final
def
compose: Compose[[α, β]L[A]]
- Definition Classes
- Semigroup
-
def
contramap[B](f: (B) ⇒ L[A]): Order[B]
- Definition Classes
- Order → Equal
-
def
eql[B](n1: L[A], n2: L[A])(implicit arg0: BoolLattice[B]): B
Equality check, returning an abstract result
Equality check, returning an abstract result
- Definition Classes
- BaseInstance → LatticeElement
-
def
equal(x: L[A], y: L[A]): Boolean
- Definition Classes
- Order → Equal
-
def
equalIsNatural: Boolean
- Definition Classes
- Equal
-
def
equalLaw: EqualLaw
- Definition Classes
- Equal
-
val
equalSyntax: EqualSyntax[L[A]]
- Definition Classes
- Equal
-
def
greaterThan(x: L[A], y: L[A]): Boolean
- Definition Classes
- Order
-
def
greaterThanOrEqual(x: L[A], y: L[A]): Boolean
- Definition Classes
- Order
-
final
def
ifEmpty[B](a: L[A])(t: ⇒ B)(f: ⇒ B)(implicit eq: Equal[L[A]]): B
- Definition Classes
- Monoid
-
def
isMZero(a: L[A])(implicit eq: Equal[L[A]]): Boolean
- Definition Classes
- Monoid
-
def
join(x: L[A], y: ⇒ L[A]): L[A]
The join operation
The join operation
- Definition Classes
- BaseInstance → LatticeElement
-
def
latticeElementLaw: LatticeElementLaw
- Definition Classes
- LatticeElement
-
def
lessThan(x: L[A], y: L[A]): Boolean
- Definition Classes
- Order
-
def
lessThanOrEqual(x: L[A], y: L[A]): Boolean
- Definition Classes
- Order
-
def
max(x: L[A], y: L[A]): L[A]
- Definition Classes
- Order
- def meet(x: L[A], y: ⇒ L[A]): L[A]
-
def
min(x: L[A], y: L[A]): L[A]
- Definition Classes
- Order
-
def
monoidLaw: MonoidLaw
- Definition Classes
- Monoid
-
val
monoidSyntax: MonoidSyntax[L[A]]
- Definition Classes
- Monoid
-
def
multiply(value: L[A], n: Int): L[A]
- Definition Classes
- Monoid
-
def
multiply1(value: L[A], n: Int): L[A]
- Definition Classes
- Semigroup
-
def
name: String
The name of the lattice
The name of the lattice
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
onEmpty[A, B](a: L[A])(v: ⇒ B)(implicit eq: Equal[L[A]], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
final
def
onNotEmpty[B](a: L[A])(v: ⇒ B)(implicit eq: Equal[L[A]], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
def
order(x: L[A], y: L[A]): Ordering
- Definition Classes
- BaseInstance → Order
-
def
orderLaw: OrderLaw
- Definition Classes
- Order
-
val
orderSyntax: OrderSyntax[L[A]]
- Definition Classes
- Order
-
def
reverseOrder: Order[L[A]]
- Definition Classes
- Order
-
def
semigroupLaw: SemigroupLaw
- Definition Classes
- Semigroup
-
val
semigroupSyntax: SemigroupSyntax[L[A]]
- Definition Classes
- Semigroup
-
def
show(f: L[A]): Cord
- Definition Classes
- Show
-
val
showSyntax: ShowSyntax[L[A]]
- Definition Classes
- Show
-
def
shows(x: L[A]): String
- Definition Classes
- BaseInstance → Show
-
def
sort(x: L[A], y: L[A]): (L[A], L[A])
- Definition Classes
- Order
-
def
subsumes(x: L[A], y: ⇒ L[A]): Boolean
The subsumption relation that defines the ordering of elements
The subsumption relation that defines the ordering of elements
- Definition Classes
- BaseInstance → LatticeElement
-
def
toScalaOrdering: Ordering[L[A]]
- Definition Classes
- Order
-
val
top: L[A]
The top element.
The top element.
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
zero: L[A]
- Definition Classes
- LatticeElement → Monoid