trait BoolLatticeLaw extends LatticeElementLaw
- Alphabetic
- By Inheritance
- BoolLatticeLaw
- LatticeElementLaw
- OrderLaw
- EqualLaw
- MonoidLaw
- SemigroupLaw
- AnyRef
- Any
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- All
Value Members
-
def
antisymmetric(f1: B, f2: B): Boolean
- Definition Classes
- OrderLaw
-
def
associative(f1: B, f2: B, f3: B)(implicit F: Equal[B]): Boolean
- Definition Classes
- SemigroupLaw
-
def
bottomLowerBound(a: B): Boolean
Bottom is the lower bound ∀ a: ⊥ ⊑ a
Bottom is the lower bound ∀ a: ⊥ ⊑ a
- Definition Classes
- LatticeElementLaw
-
def
bottomNotTrueNorFalse: Boolean
Bottom is neither true nor false ¬isTrue(⊥) ∧ ¬isFalse(⊥)
-
def
commutative(f1: B, f2: B): Boolean
- Definition Classes
- EqualLaw
-
def
eqlIsTrue(a: B): Boolean
Equal elements are always eql if they're not bottom.
Equal elements are always eql if they're not bottom. ∀ a: a = bottom ∨ isTrue(eql(a, a))
- Definition Classes
- LatticeElementLaw
-
def
injectPreservesTruthiness: Boolean
Inject preserves truthiness isTrue(inject(true)) ∧ isFalse(inject(false))
-
def
joinAssociative(a: B, b: B, c: B): Boolean
Join is associative ∀ a, b, c: (a ⊔ b) ⊔ c = a ⊔ (b ⊔ c)
Join is associative ∀ a, b, c: (a ⊔ b) ⊔ c = a ⊔ (b ⊔ c)
- Definition Classes
- LatticeElementLaw
-
def
joinCommutative(a: B, b: B): Boolean
Join is commutative ∀ a, b: a ⊔ b = b ⊔ a
Join is commutative ∀ a, b: a ⊔ b = b ⊔ a
- Definition Classes
- LatticeElementLaw
-
def
joinIdempotent(a: B): Boolean
Join is idempotent ∀ a: a ⊔ a = a
Join is idempotent ∀ a: a ⊔ a = a
- Definition Classes
- LatticeElementLaw
-
def
joinSubsumesCompatible(a: B, b: B): Boolean
Join and subsumes are compatible ∀ a, b: a ⊑ b ⇒ a ⊔ b = b
Join and subsumes are compatible ∀ a, b: a ⊑ b ⇒ a ⊔ b = b
- Definition Classes
- LatticeElementLaw
-
def
leftIdentity(a: B)(implicit F: Equal[B]): Boolean
- Definition Classes
- MonoidLaw
-
def
naturality(f1: B, f2: B): Boolean
- Definition Classes
- EqualLaw
-
def
notInvolutive(a: B): Boolean
Not is involutive ∀ a: not(not(a)) == a
-
def
notReversesTruthiness(a: B): Boolean
Not reverses truthiness ∀ a: isTrue(a) ⇒ isFalse(not(a)) ∧ isFalse(a) ⇒ isTrue(not(a))
-
def
orderAndEqualConsistent(f1: B, f2: B): Boolean
- Definition Classes
- OrderLaw
-
def
reflexive(f: B): Boolean
- Definition Classes
- EqualLaw
-
def
rightIdentity(a: B)(implicit F: Equal[B]): Boolean
- Definition Classes
- MonoidLaw
-
def
topTrueAndFalse: Boolean
Top is both true and false (when defined) isTrue(⊤) ∧ isFalse(⊤)
-
def
topUpperBound(a: B): Boolean
Top is the upper bound (when defined) ∀ a: a ⊑ ⊤
Top is the upper bound (when defined) ∀ a: a ⊑ ⊤
- Definition Classes
- LatticeElementLaw
-
def
transitive(f1: B, f2: B, f3: B): Boolean
- Definition Classes
- EqualLaw
-
def
transitiveOrder(f1: B, f2: B, f3: B): Boolean
- Definition Classes
- OrderLaw