abstract class BaseInstance extends LatticeElement[T]
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- BaseInstance
- LatticeElement
- Show
- Monoid
- Semigroup
- Order
- Equal
- AnyRef
- Any
Implicitly
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
Visibility
- Public
- All
Instance Constructors
- new BaseInstance(typeName: String)
Type Members
-
trait
LatticeElementLaw extends MonoidLaw with OrderLaw
- Definition Classes
- LatticeElement
-
trait
EqualLaw extends AnyRef
- Definition Classes
- Equal
-
trait
MonoidLaw extends scalaz.Monoid.SemigroupLaw
- Definition Classes
- Monoid
-
trait
OrderLaw extends scalaz.Order.EqualLaw
- Definition Classes
- Order
-
trait
SemigroupLaw extends AnyRef
- Definition Classes
- Semigroup
Value Members
-
final
def
append(x: T, y: ⇒ T): T
- Definition Classes
- LatticeElement → Semigroup
-
final
def
applicative: Applicative[[α]T]
- Definition Classes
- Monoid
-
final
def
apply: Apply[[α]T]
- Definition Classes
- Semigroup
-
def
apply(x: T, y: T): Ordering
- Definition Classes
- Order
-
val
bottom: T
The bottom element
The bottom element
- Definition Classes
- BaseInstance → LatticeElement
-
def
cardinality(x: T): Cardinality
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
category: Category[[α, β]T]
- Definition Classes
- Monoid
-
final
def
compose: Compose[[α, β]T]
- Definition Classes
- Semigroup
-
def
contramap[B](f: (B) ⇒ T): Order[B]
- Definition Classes
- Order → Equal
-
def
eql[B](n1: T, n2: T)(implicit arg0: BoolLattice[B]): B
Equality check, returning an abstract result
Equality check, returning an abstract result
- Definition Classes
- BaseInstance → LatticeElement
-
def
equal(x: T, y: T): Boolean
- Definition Classes
- Order → Equal
-
def
equalIsNatural: Boolean
- Definition Classes
- Equal
-
def
equalLaw: EqualLaw
- Definition Classes
- Equal
-
val
equalSyntax: EqualSyntax[T]
- Definition Classes
- Equal
-
def
greaterThan(x: T, y: T): Boolean
- Definition Classes
- Order
-
def
greaterThanOrEqual(x: T, y: T): Boolean
- Definition Classes
- Order
-
final
def
ifEmpty[B](a: T)(t: ⇒ B)(f: ⇒ B)(implicit eq: Equal[T]): B
- Definition Classes
- Monoid
-
def
isMZero(a: T)(implicit eq: Equal[T]): Boolean
- Definition Classes
- Monoid
-
def
join(x: T, y: ⇒ T): T
The join operation
The join operation
- Definition Classes
- BaseInstance → LatticeElement
-
def
latticeElementLaw: LatticeElementLaw
- Definition Classes
- LatticeElement
-
def
lessThan(x: T, y: T): Boolean
- Definition Classes
- Order
-
def
lessThanOrEqual(x: T, y: T): Boolean
- Definition Classes
- Order
-
def
max(x: T, y: T): T
- Definition Classes
- Order
- def meet(x: T, y: ⇒ T): T
-
def
min(x: T, y: T): T
- Definition Classes
- Order
-
def
monoidLaw: MonoidLaw
- Definition Classes
- Monoid
-
val
monoidSyntax: MonoidSyntax[T]
- Definition Classes
- Monoid
-
def
multiply(value: T, n: Int): T
- Definition Classes
- Monoid
-
def
multiply1(value: T, n: Int): T
- Definition Classes
- Semigroup
-
def
name: String
The name of the lattice
The name of the lattice
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
onEmpty[A, B](a: T)(v: ⇒ B)(implicit eq: Equal[T], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
final
def
onNotEmpty[B](a: T)(v: ⇒ B)(implicit eq: Equal[T], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
def
order(x: T, y: T): Ordering
- Definition Classes
- BaseInstance → Order
-
def
orderLaw: OrderLaw
- Definition Classes
- Order
-
val
orderSyntax: OrderSyntax[T]
- Definition Classes
- Order
-
def
reverseOrder: Order[T]
- Definition Classes
- Order
-
def
semigroupLaw: SemigroupLaw
- Definition Classes
- Semigroup
-
val
semigroupSyntax: SemigroupSyntax[T]
- Definition Classes
- Semigroup
-
def
show(f: T): Cord
- Definition Classes
- Show
-
val
showSyntax: ShowSyntax[T]
- Definition Classes
- Show
-
def
shows(x: T): String
- Definition Classes
- BaseInstance → Show
-
def
sort(x: T, y: T): (T, T)
- Definition Classes
- Order
-
def
subsumes(x: T, y: ⇒ T): Boolean
The subsumption relation that defines the ordering of elements
The subsumption relation that defines the ordering of elements
- Definition Classes
- BaseInstance → LatticeElement
-
def
toScalaOrdering: Ordering[T]
- Definition Classes
- Order
-
val
top: T
The top element.
The top element.
- Definition Classes
- BaseInstance → LatticeElement
-
final
def
zero: T
- Definition Classes
- LatticeElement → Monoid