Probability of @@S@@ successes on @@N@@ draws

Probability of @@S@@ successes on @@N@@ draws

Probability for 1 draw @@p@@ %
Maximum number of draws @@N@@
Selected value for first chart @@N@@
Selected value for second chart @@S@@
@@\mathrm{P}(S\text{ successes on }N\text{ draws})@@
N\S012345678910
0100   
196   4   
292.167.680.16
388.4711.060.460.01
484.9314.160.880.02~0   
581.5416.991.420.06~0   ~0   
678.2819.572.040.11~0   ~0   ~0   
775.1421.922.740.190.01~0   ~0   ~0   
872.1424.053.510.290.02~0   ~0   ~0   ~0   
969.2525.974.330.420.03~0   ~0   ~0   ~0   ~0   
1066.4827.7 5.190.580.04~0   ~0   ~0   ~0   ~0   ~0   
http://www.opimedia.be/probability/success.html?p=4

Formulas

At most: @@\mathrm{P}({\le}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=0}^{S} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@
Exact: @@\mathrm{P}(\phantom{\le}\,S\text{ successes on }N\text{ draws}) = \binom{S}{N}\,p^S\,(1 - p)^{N-S}@@
At least: @@\mathrm{P}({\ge}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=S}^{N} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@

Usage

Links