Probability of @@S@@ successes on @@N@@ draws
Probability for 1 draw | @@p@@ | % | |
---|---|---|---|
Maximum number of draws | @@N@@ | ||
Selected value for first chart | @@N@@ | ||
Selected value for second chart | @@S@@ |
@@\mathrm{P}(\le S\text{ successes on }N\text{ draws})@@
@@\mathrm{P}(S\text{ successes on }N\text{ draws})@@
@@\mathrm{P}(\ge S\text{ successes on }N\text{ draws})@@
Formulas
At most: | @@\mathrm{P}({\le}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=0}^{S} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@ |
Exact: | @@\mathrm{P}(\phantom{\le}\,S\text{ successes on }N\text{ draws}) = \binom{S}{N}\,p^S\,(1 - p)^{N-S}@@ |
At least: | @@\mathrm{P}({\ge}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=S}^{N} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@ |
Usage
- Click to one table element to set the corresponding @@N@@ and @@S@@ chart values.
- Press ESC key to reset to default values.
- 🔗 Link to this application with current values: http://www.opimedia.be/probability/success.html
Links
- The JavaScript file used by this application: success.js
- This application uses these other free softwares:
- Probability to win at least once