Probability of @@S@@ successes on @@N@@ draws

Probability of @@S@@ successes on @@N@@ draws

Probability for 1 draw @@p@@ %
Maximum number of draws @@N@@
Selected value for first chart @@N@@
Selected value for second chart @@S@@
@@\mathrm{P}(S\text{ successes on }N\text{ draws})@@
N\S012345678910
0100   
150   50   
225   50   25   
312.5 37.5 37.5 12.5 
46.2525   37.5 25   6.25
53.1315.6331.2531.2515.633.13
61.569.3823.4431.2523.449.381.56
70.785.4716.4127.3427.3416.415.470.78
80.393.1310.9421.8827.3421.8810.943.130.39
90.2 1.767.0316.4124.6124.6116.417.031.760.2 
100.1 0.984.3911.7220.5124.6120.5111.724.390.980.1 
http://www.opimedia.be/probability/success.html

Formulas

At most: @@\mathrm{P}({\le}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=0}^{S} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@
Exact: @@\mathrm{P}(\phantom{\le}\,S\text{ successes on }N\text{ draws}) = \binom{S}{N}\,p^S\,(1 - p)^{N-S}@@
At least: @@\mathrm{P}({\ge}\,S\text{ successes on }N\text{ draws}) = \sum\limits_{i=S}^{N} \binom{i}{N}\,p^i\,(1 - p)^{N-i}@@

Usage

Links