report et + modulo 2, multiplication | | | r . | | | | | + | | | | | | | | | | | | |
relations | | | min | > | | < | | ≠ | max | | | = | | ≥ | | ≤ | | | | |
négation du connecteur | | /1 | /| | /→ | | /← | | /↔ | /↓ | | /∨ | /⊕ | /q | | /p | | /∧ | /0 | | |
|
p | q | | 0 | ∧ | | p | | q | ⊕ | ∨ | | ↓ | ↔ | | ← | | → | | | 1 | | |
|
0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |
0 | 1 | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | |
1 | 0 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | |
1 | 1 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | |
|
réflexif ? | | | | | | | | | | | | ✔ | | ✔ | | ✔ | | ✔ | | x ∗ x |
symétrique ? | | ✔ | ✔ | | | | | ✔ | ✔ | | ✔ | ✔ | | | | | ✔ | ✔ | | (x ∗ y) → (y ∗ x) |
anti-symétrique ? | | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | [(x ∗ y) ∧ (y ∗ x)] → (x ↔ y) |
transitif ? | | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | | | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | | ✔ | | [(x ∗ y) ∧ (y ∗ z)] → (x ∗ z) |
euclidien ? | | ✔ | ✔ | | | | ✔ | | | | ✔ | ✔ | ✔ | | | | | ✔ | | [(x ∗ y) ∧ (x ∗ z)] → (y ∗ z) |
|
associatif ? | | ✔ | ✔ | | ✔ | | ✔ | ✔ | ✔ | | | ✔ | | | | | | ✔ | | [(x ∗ y) ∗ z] ↔ [x ∗ (y ∗ z)] |
élément neutre | | | 1 | | | | | 0 | 0 | | | 1 | | | | | | | | (x ∗ neutre) ↔ x ↔ (neutre ∗ x) |
élément symétrique de x | | | | | | | | x | | | | x | | | | | | | | (x ∗ x') ↔ neutre ↔ (x' ∗ x) |
commutatif ? | | ✔ | ✔ | | | | | ✔ | ✔ | | ✔ | ✔ | | | | | ✔ | ✔ | | (x ∗ y) ↔ (y ∗ x) |
élément absorbant | | 0 | 0 | | | | | | 1 | | | | | | | | | 1 | | (x ∗ absorbant) ↔ absorbant ↔ (absorbant ∗ x) |
idempotent ? | | | ✔ | | ✔ | | ✔ | | ✔ | | | | | | | | | | | (x ∗ x) ↔ x |
involution ? | | | | | | | | ✔ | | | | ✔ | | | | | | | | (x ∗ x) ↔ neutre |