APRAPY conversion

Set parameters

% % < %
% % < %
= year
% % < %
= year
% % < %
= year

Explanations

@@\mathrm{APR}@@ (Annual Percentage Rate) is the rate of simple interest for one year. If interests is given in each period, with @@N@@ periods for one year, then each period gives @@\frac{\mathrm{APR}}{N}@@ interest, always computed on the initial amount.

@@\mathrm{APY}@@ (Annual Percentage Yield) is the rate of compound interest for one year. If interests is given in each period, with @@N@@ periods for one year, then for each period the @@\frac{\mathrm{APR}}{N}@@ interest is added to the total amount, and so interests also generate interest in next periods.

For example, for a number of periods @@N = 5@@, a simple interest for the year @@\mathrm{APR} = 10\%@@ and an initial amount @@A_0 = 1000\unicode{8364}@@.

The rate for each period is @@\frac{\mathrm{APR}}{N} = \frac{10}{5}\% = 2\% = 0.02@@.

With

simple interest

the @@5@@ periods during the year give successively:
@@InterestTotal profitTotal amountA0=1000I1=1000× 0.02=20P1=0+ 20=20A1=1000I2=1000× 0.02=20P2=20+ 20=40A2=1000I3=1000× 0.02=20P3=40+ 20=60A3=1000I4=1000× 0.02=20P4=60+ 20=80A4=1000I5=1000× 0.02=20P5=80+ 20=100A5=10001 yearP10=2002 yearsP15=3003 yearsP20=4004 years@@

In general,
total profit after @@k@@ periods @@P_k = A_0 + \underbrace{\frac{\mathrm{APR}}{N} + \dots + \frac{\mathrm{APR}}{N}}_{k\text{ times}} = A_0 \times \frac{\mathrm{APR}}{N} \times k@@.

Total profit after one year (i.e. @@N@@ periods) @@P_N = A_0 \times \mathrm{APR}@@.

Total profit after @@i@@ years @@P_{i N} = A_0 \times \mathrm{APR} \times i@@.

With

compound interest

the @@5@@ periods during the year give successively:
@@InterestTotal amountA0=1000I1=1000× 0.02=20A1=1000× 1.02=1000+ 20=1020I2=1020× 0.02=20.4A2=1020× 1.02=1020+ 20.4=1040.4I3=1040.4× 0.02=20.808A3=1040.4× 1.02=1040.4+ 20.808=1061.208I4=1061.208× 0.02=21.22416A4=1061.208× 1.02=1061.208+ 21.22416=1082.43216I5=1082.43216× 0.02=21.6486432A5=1082.43216× 1.02=1082.43216+ 21.6486432=1104.08080321 yearA101218.994422 yearsA151345.8683383 yearsA201485.9473964 years@@

That gives the corresponding @@\mathrm{APY} = 0.1040808032 = 10.40808032\%@@.

In general,
total amount after @@k@@ periods @@A_k = A_0 \times \underbrace{\left(1 + \frac{\mathrm{APR}}{N}\right) \times \dots \times \left(1 + \frac{\mathrm{APR}}{N}\right)}_{k\text{ times}} = A_0 \times \left(1 + \frac{\mathrm{APR}}{N}\right)^k@@.

Total amount after one year (i.e. @@N@@ periods) @@A_N = A_0 \times \left(1 + \frac{\mathrm{APR}}{N}\right)^N = A_0 \times (1 + \mathrm{APY})@@.

Total amount after @@i@@ years @@A_{i N} = A_0 \times \left(1 + \frac{\mathrm{APR}}{N}\right)^{i N}@@.

Note that for any @@N: \mathrm{APY} \lt \lim\limits_{k\rightarrow\infty} \left(1 + \frac{\mathrm{APR}}{k}\right)^k - 1 = e^{\mathrm{APR}} - 1@@ (this is the value in the APY limit row).

Conversion between APR and APY

For annual percentage rate @@\mathrm{APR} \in \mathbb{R}@@, annual percentage rate @@\mathrm{APY} \in \mathbb{R}@@ and the number of periods @@N \in \mathbb{N}@@.
  • @@\mathrm{APY} = \left(1 + \frac{\mathrm{APR}}{N}\right)^N - 1@@
  • Reciprocally @@\mathrm{APR} =\left(\sqrt[N]{1 + \mathrm{APY}} - 1\right) N@@

Links

🚧 Todo 🚧