Parallel numerical verification of the σ_odd problem
October 6, 2018
|
Functions to calculate pentagonal numbers and one useless algorithm that used the Euler formula to calculate the sum of divisors. More...
Go to the source code of this file.
Namespaces | |
sigmaodd | |
A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
constexpr nat_type | sigmaodd::pentagonal (nat_type n) |
Return the pentagonal number of n. More... | |
constexpr nat_type | sigmaodd::pentagonal_neg (nat_type n) |
Return the generalized pentagonal number of -n. More... | |
nat_type | sigmaodd::sum_divisors__euler (nat_type n) |
Calculates the sum of all divisors of n with the Euler formula about pentagonal numbers and returns it. More... | |
bool | sigmaodd::sum_divisors__euler_cache_is_full () |
Return true iff the cache used by sum_divisors__euler() is full. The function can clean space, but it is less efficient. More... | |
std::size_t | sigmaodd::sum_divisors__euler_cache_nb () |
Return the current number of items in the cache used by sum_divisors__euler() More... | |
std::size_t | sigmaodd::sum_divisors__euler_table_nb () |
Return the (constant) number of items in the table used by sum_divisors__euler() More... | |
Functions to calculate pentagonal numbers and one useless algorithm that used the Euler formula to calculate the sum of divisors.
(December 9, 2017) http://mathworld.wolfram.com/PentagonalNumber.html
GPLv3 — Copyright (C) 2017 Olivier Pirson http://www.opimedia.be/
Definition in file pentagonal.hpp.