Parallel numerical verification of the σ_odd problem
October 6, 2018
|
Go to the source code of this file.
Namespaces | |
sigmaodd | |
A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
constexpr bool | sigmaodd::is_even (nat_type n) |
Return true iff n is even. More... | |
constexpr bool | sigmaodd::is_odd (nat_type n) |
Return true iff n is odd. More... | |
constexpr nat_type | sigmaodd::pow_nat (nat_type n, unsigned int k) |
Return x^k, x power k. More... | |
constexpr double | sigmaodd::square (double x) |
Return x*x. More... | |
constexpr nat_type | sigmaodd::square (nat_type n) |
Return n*n. More... | |
constexpr nat_type | sigmaodd::sum_even (nat_type n) |
Return 2 + 4 + 6 + 8 + ... + (n or n-1) = k(k + 1) with k = floor(n/2). More... | |
constexpr nat_type | sigmaodd::sum_geometric_progression (nat_type r, unsigned int k) |
Return the sum of the (k + 1) terms of the geometric progression of the common ratio r. More... | |
constexpr nat_type | sigmaodd::sum_geometric_progression_strict (nat_type r, unsigned int k) |
Return sum_geometric_progression(r, k) but only for r > 1. More... | |
constexpr nat_type | sigmaodd::sum_natural (nat_type n) |
Return 1 + 2 + 3 + 4 + ... + n = n(n + 1)/2. More... | |
constexpr nat_type | sigmaodd::sum_odd (nat_type n) |
Return 1 + 3 + 5 + 7 + ... + (n or n-1) = k^2 with k floor((n+1)/2). More... | |
nat_type | sigmaodd::ceil_eighth_root (nat_type n) |
Return the eighth root of n rounded to above. More... | |
nat_type | sigmaodd::ceil_fourth_root (nat_type n) |
nat_type | sigmaodd::ceil_square_root (nat_type n) |
Return the square root of n rounded to above. More... | |
(December 20, 2017)
GPLv3 — Copyright (C) 2017 Olivier Pirson http://www.opimedia.be/
Definition in file helper__inline.hpp.