Parallel numerical verification of the σ_odd problem
October 6, 2018
|
Function to calculate harmonic number H_n = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n and some variants and upper bounds. More...
Go to the source code of this file.
Namespaces | |
sigmaodd | |
A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
double | sigmaodd::diff_half_harmonic_upper_bound (nat_type a, nat_type b) |
Return an upper bound of H_a - 1/2 H_b. More... | |
double | sigmaodd::diff_half_harmonic_upper_bound (nat_type n) |
Return an upper bound of H_n - 1/2 H_k with k = floor(n/2). More... | |
double | sigmaodd::diff_harmonic_upper_bound (nat_type a, nat_type b) |
Return an upper bound of H_a - H_b. More... | |
constexpr double | sigmaodd::harmonic (nat_type n) |
Return the harmonic number H_n = 1/1 + 1/2 + 1/3 + 1/4 + ... + 1/n. More... | |
constexpr double | sigmaodd::harmonic_even (nat_type n) |
Return 1/2 + 1/4 + 1/6 + 1/8 + ... + (1/n or 1/(n-1)). More... | |
constexpr double | sigmaodd::harmonic_odd (nat_type n) |
Return 1/1 + 1/3 + 1/5 + 1/7 + ... + (1/n or 1/(n-1)). More... | |
double | sigmaodd::harmonic_lower_bound (nat_type n) |
Return a lower bound of H_n. More... | |
double | sigmaodd::harmonic_upper_bound (nat_type n) |
Return an upper bound of H_n. More... | |
nat_type | sigmaodd::sum_floor_n_harmonic_odd (nat_type n, nat_type to_n) |
Return floor(n/1) + floor(n/3) + floor(n/5) + floor(n/7) + ... + (n/to_n or floor(1/(to_n-1))). More... | |
Function to calculate harmonic number H_n = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n and some variants and upper bounds.
(February 14, 2018) http://mathworld.wolfram.com/HarmonicNumber.html
GPLv3 — Copyright (C) 2017, 2018 Olivier Pirson http://www.opimedia.be/
Definition in file harmonic.hpp.