Parallel numerical verification of the σ_odd problem
October 6, 2018
|
Go to the source code of this file.
Namespaces | |
sigmaodd | |
A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
double | sigmaodd::diff_half_harmonic_upper_bound (nat_type a, nat_type b) |
Return an upper bound of H_a - 1/2 H_b. More... | |
double | sigmaodd::diff_half_harmonic_upper_bound (nat_type n) |
Return an upper bound of H_n - 1/2 H_k with k = floor(n/2). More... | |
double | sigmaodd::diff_harmonic_upper_bound (nat_type a, nat_type b) |
Return an upper bound of H_a - H_b. More... | |
double | sigmaodd::harmonic_lower_bound (nat_type n) |
Return a lower bound of H_n. More... | |
double | sigmaodd::harmonic_upper_bound (nat_type n) |
Return an upper bound of H_n. More... | |
nat_type | sigmaodd::sum_floor_n_harmonic_odd (nat_type n, nat_type to_n) |
Return floor(n/1) + floor(n/3) + floor(n/5) + floor(n/7) + ... + (n/to_n or floor(1/(to_n-1))). More... | |
Variables | |
const double | sigmaodd::alpha = 0.425 |
const double | sigmaodd::alpha_bis = 0.7 |
const double | sigmaodd::beta = 0.40580406331047491619301581522449851 |
const double | sigmaodd::euler_gamma = 0.577215664901532860606512090082402431042 |
The Euler-Mascheroni constant 0.577215664901532860606512090082402431042... (rounded to an upper bound in double) http://mathworld.wolfram.com/Euler-MascheroniConstant.html. More... | |
(February 14, 2018)
GPLv3 — Copyright (C) 2017, 2018 Olivier Pirson http://www.opimedia.be/
Definition in file harmonic.cpp.