Parallel numerical verification of the σ_odd problem
October 6, 2018
|
Go to the source code of this file.
Namespaces | |
sigmaodd | |
A lot of functions and stuffs to deal the sigma_odd problem and related stuffs. | |
Functions | |
constexpr nat_type | sigmaodd::gcd (nat_type a, nat_type b) |
Return the Greatest Common Divisor of a and b. More... | |
constexpr nat_type | sigmaodd::is_coprime (nat_type a, nat_type b) |
Return true iff a and b are coprime (relatively prime). More... | |
constexpr bool | sigmaodd::is_divide (nat_type d, nat_type n) |
Return true iff d divide n, i.e. if n is divisible by d. More... | |
constexpr bool | sigmaodd::is_first_mersenne_prime_unitary_divide (nat_type n) |
Return true iff at least one of 3, 7, 31 or 127 is an unitary divisor of n. More... | |
constexpr bool | sigmaodd::is_first_mersenne_prime_unitary_divide_or_square (nat_type n) |
Return true iff is_first_mersenne_prime_unitary_divide(n) or is_square(n). More... | |
constexpr bool | sigmaodd::is_little_mersenne_prime_unitary_divide (nat_type n) |
Return true iff at least one of 3, 7, 31, 127, 8191, 131071 or 524287 is an unitary divisor of n. More... | |
constexpr bool | sigmaodd::is_mersenne_prime_unitary_divide (nat_type n) |
Return true iff at least one of 3, 7, 31, 127, 8191, 131071, 524287, 2147483647 or 2305843009213693951 is an unitary divisor of n. More... | |
constexpr bool | sigmaodd::is_unitary_divide (nat_type d, nat_type n) |
Return true iff (d divide n) and (d NOT divide n/d). More... | |
nat_type | sigmaodd::divide_until_odd (nat_type n) |
Return n divided by 2 until the result is odd. More... | |
std::pair< nat_type, unsigned int > | sigmaodd::divide_until_odd_nb (nat_type n) |
Divide n by 2 until the result is odd, and return (result, number of divisions). More... | |
(January 7, 2018)
GPLv3 — Copyright (C) 2017, 2018 Olivier Pirson http://www.opimedia.be/
Definition in file divisors__inline.hpp.